

OCAC Training Centre
INTERNSHIP TRAINING PROGRAM

JAVA

1

About OCAC Training Centre

OCAC Training Centre is the state-of-the-art training centre established by

OCAC the Designated Technical Directorate of Information Technology

Department, Govt. of Odisha to develop the IT skills of learners and make them

job-ready/ workforce ready with support from Odisha Knowledge Corporation

Ltd. (OKCL).

OCAC Training Centre provide Summer Training & Internship for all the

technical Graduates in the state of Odisha.

Here are some key benefits of the program that we believe will be of interest

to students:

 Learn from expert trainers with real-world experience in C++ / Python / Java.

 Work on a short-term project that showcases their technical skills.

 Get personalized guidance and feedback to help them excel.

 Receive a completion certificate from OCAC, a reputed government organization.

 Develop essential interview skills to ace technical and personal interviews.

 Guidance & opportunity for Placement

2

Content

 Introduction

 Course Curriculum for Internship Training in Java

 Syllabus for Brush-up Session on Core Java

 Syllabus for Java Advanced

 Projects Using Java

 Software Project Development Process

3

Internship Training programs

The OCAC Training Centre offers Internship Training programs to B-Tech and MCA students

during the summer. These internship programs provide students with an opportunity to learn

a programming language through assignment-based learning systems. The training program

is designed to enhance students' practical skills and knowledge in their chosen programming

language.

Here are some key features of the Internship Training program:

1. Programming Language Learning: Students will undergo classroom learning sessions

where they will be taught the fundamentals and advanced concepts of a specific

programming language. The focus is on developing a strong understanding of the

language and its syntax.

2. Assignment-Based Learning Systems: The training program utilizes assignment-based

learning systems, which means students will receive assignments related to the topics

covered in the classroom. These assignments are designed to reinforce the theoretical

concepts learned and encourage practical application.

3. Small Project Development: As part of the internship training, students will be

required to work on a small project based on the learning outcomes. This project

allows students to apply their knowledge and skills in a real-world scenario, fostering

practical experience and problem-solving abilities.

4. Duration: The total duration of the Internship Training program is 60 hours. This

includes 40 hours of classroom learning, where students receive theoretical

instruction and hands-on practice, and an additional 20 hours dedicated to project

development.

The Internship Training program aims to provide students with a comprehensive learning

experience that combines theoretical knowledge with practical application. By completing

assignments and working on a small project, students gain valuable skills and experience in

their chosen programming language, preparing them for future career opportunities in the

field of software development.

4

Course Curriculum for Internship Training in Java

Internship Training program in Java at the OCAC Training Centre, incorporating a Brush-up

session on a core Java concept, 40 hours on Advanced Java, and 20 hours of project work

using Java.

Duration: 70 hours (10 hours of Brush-up session + 40 hours of Advanced Java + 20 hours of

project work)

Classroom Learning:

1. Brush-up Session on Core Java (10 hours):

 Review of core Java concepts and syntax

 Refreshing knowledge on essential topics such as data types, control flow,

arrays, OOP concepts, exception handling, and file I/O.

Assignment:

1. Review of core Java concepts and syntax: a. Write a program to find the sum of the

first 100 prime numbers. b. Implement a program that generates the Fibonacci series

up to a given limit. c. Design a program to calculate the factorial of a number using

recursion.

2. Refreshing knowledge on data types: a. Write a program to convert temperature from

Celsius to Fahrenheit and vice versa. b. Implement a program that calculates the area

and perimeter of different geometric shapes such as a circle, rectangle, and triangle.

c. Design a program that determines if a given number is prime or not.

3. Control flow: a. Write a program to check if a given year is a leap year or not. b.

Implement a program that prints the multiplication table for a given number up to a

specific range. c. Design a program that finds the largest among three numbers using

conditional statements.

4. Arrays: a. Write a program to find the second largest element in an array. b. Implement

a program that sorts an array of integers in ascending order using the bubble sort

algorithm. c. Design a program that calculates the average of all the elements in an

array.

5. Object-oriented programming (OOP) concepts: a. Create a class representing a

student with attributes like name, age, and grade. Implement methods to calculate

the average grade and display student information. b. Implement a class hierarchy for

different shapes (circle, square, triangle) with appropriate inheritance and

polymorphism. c. Design a class representing a bank account with methods for

deposit, withdrawal, and balance inquiry.

6. Exception handling: a. Write a program that reads input from a file and handles

exceptions such as file not found or invalid data. b. Design a function that divides two

5

numbers and handles exceptions for division by zero. c. Create a program that

performs input validation and throws custom exceptions for invalid user inputs.

7. File I/O operations: a. Write a program that reads data from a text file, manipulates

the data, and writes the modified data to a new file. b. Design a program that reads a

CSV file containing student records and performs operations like sorting and filtering

based on user input. c. Create a program that reads binary data from a file, performs

operations like encryption or compression, and writes the modified data to a new file.

2. Advanced Java (40 hours):

 Java Generics and Collections

 Multithreading and Concurrency

 Networking and Socket Programming

 Database Connectivity and JDBC

 Java Servlets and JavaServer Pages (JSP)

 Introduction to Java Frameworks (e.g., Spring, Hibernate)

Assignment:

1. Java Generics and Collections: a. Implement a generic stack data structure using an

array or linked list. b. Design a program that sorts a collection of objects using a

custom comparator. c. Create a generic method that finds the maximum element in

a collection.

2. Multithreading and Concurrency: a. Write a program that simulates a multi-threaded

scenario with producer and consumer threads sharing a bounded buffer. b.

Implement a program that uses thread synchronization mechanisms like locks or

semaphores to ensure thread safety. c. Design a concurrent program that performs

parallel computations on a large data set using thread pooling.

3. Networking and Socket Programming: a. Create a client-server application that

allows communication between multiple clients and a server using sockets. b. Design

a program that performs network discovery by scanning a range of IP addresses and

identifying active hosts. c. Implement a file transfer program using socket

programming to send files between a client and a server.

4. Database Connectivity and JDBC: a. Write a program that connects to a database,

retrieves data from a table, and performs CRUD operations using JDBC. b. Design a

program that uses prepared statements to execute parameterized queries and

prevent SQL injection attacks. c. Implement a database-backed application that

handles transactions and performs batch updates using JDBC.

6

5. Java Servlets and JavaServer Pages (JSP): a. Create a simple web application using

servlets and JSP to handle user registration and login functionality. b. Design a

program that utilizes servlet filters for authentication and authorization of incoming

requests. c. Implement a dynamic web application that displays real-time data using

servlets and JSP.

6. Introduction to Java Frameworks (e.g., Spring, Hibernate): a. Build a Spring MVC

application that performs CRUD operations on a database using Spring Data JPA. b.

Design a program that utilizes Spring AOP to implement logging or security aspects in

a Java application. c. Implement a Hibernate-based application that maps Java

objects to database tables and performs ORM operations.

Project Work (20 hours): During the project phase, students will work on a Java project that

integrates the advanced Java concepts covered in the classroom. The project work will involve

designing and implementing a practical application, utilizing frameworks and technologies

such as servlets, JSP, JDBC, or other relevant components. The specific project topic will be

assigned by the instructors based on the learning objectives and the complexity suitable for

the internship duration.

The curriculum includes a Brush-up session to refresh core Java concepts before diving into

Advanced Java topics. This helps ensure a solid foundation and smooth transition to more

advanced concepts. The Advanced Java segment covers essential topics that extend beyond

the basics, providing students with a deeper understanding of Java programming and its

application in real-world scenarios. The project work component allows students to apply

their knowledge and skills to a meaningful Java project, further enhancing their practical

experience.

Brush-up Session on Core Java

A detailed syllabus for the Brush-up Session on Core Java, which spans 10 hours of instruction:

1. Overview of Java:

 Introduction to the Java programming language

 Features of Java

 Java development environment setup (IDE)

2. Java Basics:

 Variables and data types

7

 Operators and expressions

 Control flow statements (if, switch, loops)

3. Arrays and Strings:

 Declaring and initializing arrays

 Array operations (traversing, sorting, searching)

 String manipulation and methods

4. Object-Oriented Programming (OOP) Concepts:

 Classes and objects

 Encapsulation, inheritance, and polymorphism

 Constructors and method overloading

5. Exception Handling:

 Understanding exceptions and errors

 Handling exceptions using try-catch blocks

 Throwing and creating custom exceptions

6. Input and Output Handling:

 File I/O operations (reading, writing, appending)

 Working with streams and readers/writers

 Handling file exceptions

7. Java Collections Framework:

 Introduction to collections (ArrayList, LinkedList, HashMap)

 Iterating and manipulating collections

 Sorting and searching collections

8. Generics:

 Generic classes and methods

 Type inference and bounded types

 Working with generic collections

9. Multithreading Basics:

 Introduction to threads and concurrency

 Creating and managing threads

8

 Thread synchronization and communication

10. Recap and Practice:

 Review of key concepts and topics covered

 Practical exercises and coding challenges to reinforce learning

The Brush-up Session on Core Java is designed to refresh students' knowledge and

understanding of essential concepts and syntax in Java programming. The syllabus covers a

wide range of topics, including variables and control flow, object-oriented programming,

exception handling, file I/O, collections, generics, and multithreading basics. Through this

session, students will revisit and reinforce their understanding of core Java, preparing them

for the more advanced topics to follow in the Advanced Java segment.

9

Syllabus for the Advanced Java

A detailed syllabus for the Advanced Java segment, which spans 40 hours of instruction:

1. Java Generics and Collections:

 Introduction to generics and type parameters

 Generic classes, methods, and interfaces

 Type inference and wildcard usage

 Collections framework enhancements with generics

2. Multithreading and Concurrency:

 Understanding threads and thread lifecycle

 Synchronization and locks

 Thread safety and race conditions

 Concurrent collections and utilities

 Executors and thread pools

 Thread communication and synchronization mechanisms

3. Networking and Socket Programming:

 Basics of networking protocols (TCP/IP, UDP)

 Socket programming fundamentals

 Creating client-server applications

 Handling network I/O and communication

 Working with HTTP and URL connections

4. Database Connectivity and JDBC:

 Introduction to JDBC (Java Database Connectivity)

 Establishing database connections

 Executing SQL queries and updates

 Retrieving and manipulating result sets

 PreparedStatement and CallableStatement usage

 Transaction management and error handling

5. Java Servlets and JavaServer Pages (JSP):

 Introduction to web applications and the Servlet API

10

 Servlet lifecycle and request handling

 Building dynamic web pages with JSP

 JSP directives, expressions, and scriptlets

 JavaBean integration with JSP

 Session management and filters

6. Introduction to Java Frameworks (e.g., Spring, Hibernate):

 Overview of popular Java frameworks

 Introduction to the Spring Framework and its core concepts (dependency

injection, inversion of control)

 Introduction to Hibernate ORM (Object-Relational Mapping)

 Integrating Spring and Hibernate

 Hands-on exercises and examples using the frameworks

The Advanced Java syllabus covers crucial topics in Java programming that go beyond the core

concepts. Students will delve into Java Generics and Collections, enabling them to write more

flexible and reusable code. The Multithreading and Concurrency module focuses on

developing concurrent applications, ensuring thread safety, and utilizing advanced

synchronization mechanisms. Networking and Socket Programming provide insights into

communication over networks. The Database Connectivity and JDBC section equips students

with skills to interact with databases using Java. Java Servlets and JSP cover web application

development, and the Introduction to Java Frameworks introduces popular frameworks such

as Spring and Hibernate.

It's important to note that the duration and depth of coverage for each topic may vary based

on the Training Centre's curriculum and the pace of instruction. The syllabus aims to provide

students with a comprehensive understanding of advanced Java concepts and tools

commonly used in real-world applications.

11

Projects Using Java

Details of use-cases, technologies/tools/APIs required apart from Java for each of the

suggested projects:

Project Module-wise Use-Cases Technologies/Tools/APIs

Online Quiz

Application

- User registration and login HTML, CSS, JavaScript, Java

Servlets, JDBC

- Quiz creation and management

- Quiz question display and

submission

- Scoring and result calculation

File Transfer

Application

- Establishing client-server

connection

Sockets, Networking

- File selection and transfer

- Progress tracking

Social Media Analytics

Tool

- Data retrieval from social media

APIs

API integration, Data analytics tools

- Data preprocessing and analysis

- Generating insights and

visualizations

Employee

Management System

- Employee record management Database (MySQL, Oracle, etc.),

Java Servlets, JDBC

- Employee information search and

retrieval

- Adding, updating, and deleting

employee records

Weather Forecast

Application

- Retrieving weather data from API API for weather data

- Displaying current weather

conditions and forecasts

Online Voting System - User registration and login Database (MySQL, Oracle, etc.),

Java Servlets, JDBC

- Creating and managing voting

categories and options

12

- Casting votes and calculating

results

Online Bookstore - Browsing and searching for books HTML, CSS, JavaScript, Java

Servlets, JDBC

- Adding books to the cart and

placing orders

- Payment processing and order

management

Recipe Finder

Application

- Searching recipes based on

ingredients or cuisines

API for recipe data

- Displaying recipe details and

instructions

Stock Market Analysis

Tool

- Retrieving stock market data from

API

API for stock market data

- Analyzing stock trends and

performance

- Generating charts and indicators

Movie

Recommendation

System

- User registration and login Database (MySQL, Oracle, etc.),

Java Servlets, JDBC

- Gathering user preferences and

ratings

- Recommending movies based on

user preferences

Expense Tracker - Adding and categorizing expenses Database (MySQL, Oracle, etc.),

Java Servlets, JDBC

- Generating expense reports and

summaries

- Setting budget limits and tracking

spending

Blogging Platform - User registration and login HTML, CSS, JavaScript, Java

Servlets, JDBC

- Creating and publishing blog

posts

13

- Commenting on blog posts and

interacting with other bloggers

Event Management

System

- Creating and managing events Database (MySQL, Oracle, etc.),

Java Servlets, JDBC

- Sending event invitations and

managing registrations

- Generating attendee lists and

managing event details

Online Auction System - Posting items for auction and

bidding

Database (MySQL, Oracle, etc.),

Java Servlets, JDBC

- Managing auction processes and

time limits

- Tracking bids and determining

auction winners

Music Streaming

Application

- Searching and playing songs API for music data

- Creating playlists and managing

favorites

- Displaying song information and

album covers

Online Job Portal - Job posting and searching Database (MySQL, Oracle, etc.),

Java Servlets, JDBC

- Resume submission and

application management

- Employer shortlisting and

candidate selection

Online Banking System - Account management and

transactions

Database (MySQL, Oracle, etc.),

Java Servlets, JDBC

- Fund transfers and transaction

history

- Bill payments and account

statements

Online Ticket Booking

System

- Event/movie selection and seat

booking

Database (MySQL, Oracle, etc.),

Java Servlets, JDBC

14

- Payment processing and ticket

generation

- Ticket cancellation and refund

management

Health Monitoring

System

- Collecting health data from

wearable devices

Wearable devices, API for health

data

- Data analysis and generating

health insights

- Setting health goals and

monitoring progress

Travel Planner - Destination suggestions and

itinerary planning

API for travel data

- Booking accommodations and

attractions

- Providing travel tips and local

information

This table provides a breakdown of module-wise use-cases for each project, as well as the

additional technologies, tools, and APIs that may be required apart from Java. The

technologies, tools, and APIs vary depending on the specific functionalities and integrations

required for each project. Please note that the table is not exhaustive, and additional

technologies or tools may be needed based on the project's complexity and specific

implementation requirements.

15

Software Project Development Process

To successfully complete the above projects within the given time frame and

learn about software project development, students can follow a step-by-step

process based on the Software Development Life Cycle (SDLC), incorporating

various design concepts. Here's an extended version of the process:

1. Project Understanding and Planning:

 Thoroughly understand the project requirements and objectives.

 Identify the stakeholders and their needs.

 Define project scope, constraints, and deliverables.

 Create a project plan with specific milestones and deadlines.

2. Requirement Gathering and Analysis:

 Conduct detailed requirement gathering sessions with

stakeholders.

 Document user stories, use cases, and functional requirements.

 Use techniques like interviews, surveys, and brainstorming to

gather requirements.

 Analyze the gathered requirements and create a requirement

specification document.

3. Design Phase:

 Use the gathered requirements to design the system architecture.

 Design the database schema using Entity-Relationship (ER)

diagrams.

 Create Data Flow Diagrams (DFDs) to illustrate data movement and

processing within the system.

 Design user interfaces using wireframes and mock-ups.

 Apply user interface design principles to ensure usability and

accessibility.

4. Development Iterations:

 Break down the project into smaller tasks or user stories.

16

 Prioritize and tackle the tasks based on their importance and

dependencies.

 Follow an iterative development approach, implementing one

feature or module at a time.

 Write clean, modular, and well-commented code using best

practices.

5. Testing and Debugging:

 Conduct various types of testing, such as unit testing, integration

testing, and system testing.

 Write test cases to verify the functionality and identify any defects.

 Perform regression testing to ensure that new changes do not

impact existing features.

 Debug and fix any issues or bugs that arise during testing.

6. Integration and Deployment:

 Integrate the different components or modules to ensure they

work together seamlessly.

 Deploy the application to a development or testing environment.

 Perform system-level testing and user acceptance testing.

 Prepare the application for production deployment.

7. Documentation:

 Document the project, including its architecture, design, and usage

instructions.

 Create user manuals, technical documentation, and system

documentation.

 Document any APIs, libraries, or tools used in the project.

 Include installation and configuration instructions for the

application.

8. Presentation and Demonstration:

17

 Prepare a presentation or demo to showcase the completed

project.

 Explain the project's features, functionality, and implementation

details.

 Use diagrams, such as ER diagrams and DFDs, to illustrate the

system design and data flow.

 Discuss the user interface design choices and how they enhance

user experience.

9. Reflection and Learning:

 Reflect on the project development process and identify areas for

improvement.

 Evaluate the challenges faced, lessons learned, and skills acquired.

 Consider feedback from stakeholders and users for future

enhancements.

 Document your learnings and make note of any future

improvements to the project.

By following this comprehensive process, incorporating the SDLC stages and

design concepts like use case design, ER diagrams, data flow diagrams, and user

interface design, students can effectively complete the projects within the given

time frame while gaining valuable experience in software project development.

Contact

18

