

OCAC Training Centre
INTERNSHIP TRAINING PROGRAM

PYTHON

1

About OCAC Training Centre

OCAC Training Centre is the state-of-the-art training centre established by

OCAC the Designated Technical Directorate of Information Technology

Department, Govt. of Odisha to develop the IT skills of learners and make them

job-ready/ workforce ready with support from Odisha Knowledge Corporation

Ltd. (OKCL).

OCAC Training Centre provide Summer Training & Internship for all the

technical Graduates in the state of Odisha.

Here are some key benefits of the program that we believe will be of interest

to students:

 Learn from expert trainers with real-world experience in C++ / Python / Java.

 Work on a short-term project that showcases their technical skills.

 Get personalized guidance and feedback to help them excel.

 Receive a completion certificate from OCAC, a reputed government organization.

 Develop essential interview skills to ace technical and personal interviews.

 Guidance & opportunity for Placement

2

Content

 Introduction

 Course Curriculum for Internship Training in Python

 Syllabus for Brush-up Session on Core Python

 Syllabus for Python Advanced

 Projects Using Python

 Software Project Development Process

3

Introduction

The OCAC Training Centre offers Internship Training programs to B-Tech and MCA students

during the summer. These internship programs provide students with an opportunity to

learn a programming language through assignment-based learning systems. The training

program is designed to enhance students' practical skills and knowledge in their chosen

programming language.

Here are some key features of the Internship Training program:

1. Programming Language Learning: Students will undergo classroom learning sessions

where they will be taught the fundamentals and advanced concepts of a specific

programming language. The focus is on developing a strong understanding of the

language and its syntax.

2. Assignment-Based Learning Systems: The training program utilizes assignment-based

learning systems, which means students will receive assignments related to the

topics covered in the classroom. These assignments are designed to reinforce the

theoretical concepts learned and encourage practical application.

3. Small Project Development: As part of the internship training, students will be

required to work on a small project based on the learning outcomes. This project

allows students to apply their knowledge and skills in a real-world scenario, fostering

practical experience and problem-solving abilities.

4. Duration: The total duration of the Internship Training program is 60 hours. This

includes 40 hours of classroom learning, where students receive theoretical

instruction and hands-on practice, and an additional 20 hours dedicated to project

development.

The Internship Training program aims to provide students with a comprehensive learning

experience that combines theoretical knowledge with practical application. By completing

assignments and working on a small project, students gain valuable skills and experience in

their chosen programming language, preparing them for future career opportunities in the

field of software development.

4

Course Curriculum for Internship Training in Python:

1. Brush-up Session on Core Python (10 hours):

 Introduction to Python programming language

 Variables, data types, and operators

 Control flow statements: if-else, loops, and conditional statements

 Functions and modules

 File handling and I/O operations

 Exception handling

 Object-oriented programming (OOP) concepts: classes, objects, inheritance,

and polymorphism

 Working with lists, tuples, dictionaries, and sets

 String manipulation and regular expressions

 Introduction to basic data structures and algorithms

Assignment:

I. Introduction to Python programming language: a. Write a Python program to display

the Fibonacci series up to a given number. b. Implement a program that calculates

the factorial of a number using recursion. c. Design a program that checks whether a

given string is a palindrome or not.

II. Variables, data types, and operators: a. Write a program that swaps the values of

two variables without using a temporary variable. b. Design a program that

calculates the area and perimeter of different shapes based on user input. c.

Implement a program that converts temperature between Celsius and Fahrenheit.

III. Control flow statements: if-else, loops, and conditional statements: a. Create a

program that prints all prime numbers in a given range using a loop and conditional

statements. b. Design a program that finds the sum of all even numbers in a list using

loop control statements. c. Implement a program that generates the Fibonacci series

using a while loop.

IV. Functions and modules: a. Write a Python function that checks whether a given

number is prime or not. b. Design a program that calculates the factorial of a number

using a user-defined function. c. Implement a program that finds the largest and

smallest elements in a list using built-in functions and modules.

V. File handling and I/O operations: a. Create a program that reads data from a text file,

performs some operations, and writes the result to another file. b. Design a program

that counts the frequency of words in a text file and displays the result. c. Implement

a program that reads a CSV file and performs data analysis or manipulation.

5

VI. Exception handling: a. Write a program that handles exceptions when dividing two

numbers and displays an appropriate error message. b. Design a program that reads

data from a file, handles file-related exceptions, and displays error messages

accordingly. c. Implement a program that prompts the user for input until a valid

integer is entered, handling exceptions for incorrect input.

VII. Object-oriented programming (OOP) concepts: classes, objects, inheritance, and

polymorphism: a. Create a class that represents a student and implement methods

to calculate the average grade and display student information. b. Design a program

that demonstrates inheritance by creating subclasses for different types of vehicles.

c. Implement a program that showcases polymorphism by creating different shapes

and calculating their areas.

VIII. Working with lists, tuples, dictionaries, and sets: a. Write a program that removes

duplicates from a list using sets. b. Design a program that sorts a list of dictionaries

based on a specific key. c. Implement a program that performs various operations on

tuples like concatenation, slicing, and indexing.

IX. String manipulation and regular expressions: a. Create a program that checks

whether a given string is a palindrome using string manipulation techniques. b.

Design a program that replaces specific words in a text using regular expressions. c.

Implement a program that validates email addresses using regular expressions.

X. Introduction to basic data structures and algorithms: a. Write a program that

implements a stack or queue data structure and performs push, pop, and peek

operations. b. Design a program that searches for a specific element in a list using

linear search or binary search algorithms. c. Implement a program that sorts a list of

numbers using different sorting algorithms like bubble sort or insertion sort.

2. Advanced Python (40 hours):

 Python Libraries and Packages:

 NumPy: Introduction to numerical computing with arrays and

mathematical operations

 Pandas: Data manipulation and analysis using DataFrames

 Matplotlib and Seaborn: Data visualization and plotting

 BeautifulSoup: Web scraping and parsing HTML/XML data

 Requests: HTTP requests and working with APIs

 SQLAlchemy: Database connectivity and ORM (Object-Relational

Mapping)

 TensorFlow or PyTorch: Introduction to machine learning and deep

learning frameworks

6

 Advanced Concepts:

 Decorators and generators

 Context managers and file handling best practices

 Concurrency and parallelism: multithreading and multiprocessing

 Regular expressions: advanced usage and pattern matching

 Advanced data structures: stacks, queues, linked lists, and trees

 Testing and debugging: unit testing frameworks and debugging

techniques

 Introduction to data science concepts: data preprocessing, feature

extraction, and model evaluation

Assignment:

i. Python Libraries and Packages: a. Use NumPy to create a program that performs

matrix multiplication and calculates the determinant of a matrix. b. Design a

program that utilizes Pandas to read a CSV file, manipulate the data, and perform

statistical analysis. c. Implement a program that uses Matplotlib or Seaborn to

visualize data from a given dataset using different plot types.

ii. BeautifulSoup: a. Create a program that extracts specific information from a website

by scraping its HTML content using BeautifulSoup. b. Design a program that parses

an XML document using BeautifulSoup and retrieves data from specific tags.

iii. Requests: a. Write a program that sends HTTP requests to a RESTful API and

retrieves data in JSON format, then processes and displays it. b. Implement a

program that performs web scraping by making requests to multiple web pages and

extracts relevant information.

iv. SQLAlchemy: a. Design a program that establishes a connection to a database using

SQLAlchemy and performs CRUD (Create, Read, Update, Delete) operations. b.

Create a program that utilizes ORM (Object-Relational Mapping) to define and

interact with database tables and relationships.

v. TensorFlow or PyTorch: a. Implement a program that trains a basic neural network

using TensorFlow or PyTorch to classify images from a given dataset. b. Design a

program that utilizes a pre-trained model from TensorFlow or PyTorch for image

recognition and displays the results.

vi. Decorators and generators: a. Write a program that uses decorators to measure the

execution time of a function and log the results. b. Implement a program that uses

generators to generate and iterate through a sequence of prime numbers.

vii. Context managers and file handling best practices: a. Create a program that uses

context managers to handle file operations and ensure proper resource

management. b. Design a program that reads data from multiple files, combines and

processes the data, and writes the result to a new file using context managers.

7

viii. Concurrency and parallelism: multithreading and multiprocessing: a. Write a

program that demonstrates multithreading to perform concurrent tasks and

measure the speedup in execution time. b. Design a program that utilizes

multiprocessing to process multiple tasks in parallel and compare the performance

with sequential execution.

ix. Regular expressions: advanced usage and pattern matching: a. Create a program that

uses regular expressions to extract email addresses or phone numbers from a given

text. b. Implement a program that validates and filters URLs based on a specific

pattern using regular expressions.

x. Advanced data structures: a. Design a program that implements a stack data

structure and evaluates a postfix expression. b. Write a program that utilizes a binary

tree data structure to perform various operations like insertion, deletion, and

traversal.

3. Project Work using Python (20 hours): Students will work on a hands-on project to

apply their knowledge and skills acquired during the training. The project work will

involve developing a practical application or solving a real-world problem using

Python. The project will require students to demonstrate their understanding of core

and advanced Python concepts, as well as their ability to design and implement

Python-based solutions.

8

Syllabus for Brush-up Session on Core Python

Detailed Syllabus for Brush-up Session on Core Python (10 hours):

1. Introduction to Python programming language

 Overview of Python and its key features

 Setting up Python environment and running Python scripts

 Understanding Python's syntax and indentation rules

 Exploring the Python interactive shell and Integrated Development

Environments (IDEs)

2. Variables, Data Types, and Operators

 Declaring and using variables in Python

 Data types: integers, floats, strings, booleans, and others

 Type conversion and type checking

 Arithmetic, comparison, logical, and assignment operators

 Operator precedence and associativity

3. Control Flow Statements: if-else, loops, and conditional statements

 Conditional statements: if, else, and elif

 Comparison operators and logical operators in conditionals

 Looping structures: for and while loops

 Loop control statements: break, continue, and pass

 Nested loops and loop optimization techniques

4. Functions and Modules

 Defining and calling functions in Python

 Function parameters and return values

 Scope of variables: global and local variables

 Built-in functions vs. user-defined functions

 Modules and importing modules in Python

 Exploring standard library modules and external libraries

5. File Handling and I/O Operations

 Opening, reading, writing, and closing files in Python

9

 Different file modes: text files vs. binary files

 File object methods for file manipulation

 Handling exceptions and error checking during file operations

 Working with file paths and directories

 Standard input and output: reading from and writing to the console

6. Exception Handling

 Understanding exceptions and error handling in Python

 Exception handling using try-except blocks

 Handling specific exceptions and multiple exceptions

 Raising exceptions and creating custom exceptions

 Using finally block and cleaning up resources

 Exception propagation and traceback information

7. Object-Oriented Programming (OOP) Concepts

 Introduction to OOP and its principles

 Classes and objects: defining and using classes

 Constructors and destructors in classes

 Encapsulation: data hiding and access modifiers

 Inheritance: creating derived classes and base classes

 Polymorphism: method overriding and method overloading

8. Working with Lists, Tuples, Dictionaries, and Sets

 Lists: creating, indexing, slicing, and modifying lists

 Tuples: creating, accessing, and manipulating tuples

 Dictionaries: creating, accessing, and updating key-value pairs

 Sets: creating, adding, removing, and performing set operations

 List comprehensions and other techniques for data manipulation

9. String Manipulation and Regular Expressions

 String operations: concatenation, indexing, slicing, and formatting

 String methods for manipulation and transformation

 Regular expressions: pattern matching and search operations

10

 Regular expression metacharacters and character classes

 Using regular expressions for data validation and extraction

 Working with string functions and string formatting

10. Introduction to Basic Data Structures and Algorithms

 Arrays and their manipulation in Python

 Searching and sorting algorithms: linear search, binary search, and various

sorting techniques

 Introduction to stack, queue, linked list, and basic algorithms using these data

structures

 Introduction to recursion and recursive algorithms

 Understanding time and space complexity of algorithms

11

Syllabus for Python Advanced

Detailed Syllabus for Python Advanced Concepts (40 hours):

1. Decorators and Generators

 Understanding the concept of decorators and their role in Python

 Creating and using decorators to modify the behavior of functions

 Decorator chaining and applying multiple decorators

 Exploring built-in decorators and creating custom decorators

 Introduction to generators and their use in creating iterators

 Implementing generator functions and using generator expressions

2. Context Managers and File Handling Best Practices

 Working with context managers and the with statement in Python

 Creating context managers using the contextlib module

 Implementing context managers as classes and using the __enter__ and

__exit__ methods

 Handling file operations using context managers for clean and safe file

handling

 Understanding best practices for file handling, including error handling and

resource management

3. Concurrency and Parallelism: Multithreading and Multiprocessing

 Introduction to concurrent programming in Python

 Working with threads and the threading module

 Synchronization and thread safety using locks, semaphores, and condition

variables

 Understanding the Global Interpreter Lock (GIL) and its impact on

multithreading

 Parallel processing using multiple processes and the multiprocessing module

 Interprocess communication and data sharing techniques

4. Regular Expressions: Advanced Usage and Pattern Matching

 Advanced regular expression patterns and metacharacters

 Lookahead and lookbehind assertions in regular expressions

 Grouping, capturing, and backreferences in pattern matching

12

 Using regular expressions for advanced text manipulation and data extraction

 Regular expression performance optimization techniques

 Exploring the re module and its functions for pattern matching in Python

5. Advanced Data Structures: Stacks, Queues, Linked Lists, and Trees

 Implementing and using stacks, queues, linked lists, and trees in Python

 Understanding the characteristics, operations, and applications of these data

structures

 Implementing common algorithms on these data structures, such as traversal

and search

 Analyzing time and space complexity of operations on advanced data

structures

 Exploring advanced data structure concepts, such as balanced trees and

graph algorithms

6. Testing and Debugging: Unit Testing Frameworks and Debugging Techniques

 Introduction to software testing and the importance of unit testing

 Exploring unit testing frameworks in Python, such as unittest and pytest

 Writing test cases, test suites, and test fixtures

 Test-driven development (TDD) approach and its benefits

 Debugging techniques using breakpoints, logging, and exception handling

 Profiling and performance optimization techniques

7. Introduction to Data Science Concepts: Data Preprocessing, Feature Extraction, and

Model Evaluation

 Overview of data science and its applications

 Data preprocessing techniques: cleaning, normalization, and handling missing

values

 Feature extraction and feature engineering from raw data

 Introduction to machine learning algorithms and model evaluation

 Evaluating classification and regression models using metrics such as

accuracy, precision, recall, and F1-score

 Introduction to popular Python libraries for data science, such as NumPy,

Pandas, and scikit-learn

13

Projects Using Python

Here's a table that provides details of the use-cases and technologies/tools required

for each project, implemented using Python:

Project Module-wise Use-Cases Technologies/Tools/APIs

Online Quiz

Application

User Authentication:

Allow users to create

accounts, log in, and

manage their profiles

Flask, HTML/CSS,

JavaScript

Quiz Selection: Provide a

list of available quizzes

and allow users to select

the desired quiz

Python

Quiz Engine: Display quiz

questions, validate

answers, calculate scores,

and provide instant

feedback

Flask, Python

Leaderboard: Maintain a

leaderboard to track and

display the highest scores

and rankings among

participants

SQLite, SQLAlchemy

File Transfer

Application

Client Interface: Provide a

user-friendly interface for

clients to select and

transfer files to the server

Python sockets

Server Interface: Receive

files from clients, store

them, and notify clients

about the successful file

transfer

Python sockets

Social Media

Analytics Tool

Data Retrieval: Fetch

social media data using

APIs and retrieve

information such as user

engagement, post

popularity, and sentiment

analysis

Twitter/Facebook APIs,

Python requests

14

Data Analysis: Analyze the

retrieved data to identify

trends, popular topics,

user sentiment, and

engagement metrics

Python libraries for data

analysis

Visualization: Present the

analyzed data using

interactive charts, graphs,

and visual

representations

Matplotlib, Plotly

Employee

Management

System

Employee Records:

Manage employee

information, including

adding new employees,

updating details, and

searching for employee

records

Django, SQLite

Attendance Management:

Track employee

attendance, leave

records, and generate

attendance reports

Django, HTML/CSS

Weather Forecast

Application

Data Retrieval: Fetch

weather data from a

weather API and retrieve

information such as

current weather

conditions and forecasts

Weather API, Python

requests

User Interface: Display

weather information in a

user-friendly format,

including current

weather, temperature,

humidity, and forecasts

Flask, HTML/CSS

Online Voting

System

Voting Engine: Enable

users to cast votes for

different categories,

count votes, and

determine the winners

Flask, Python

15

User Authentication:

Implement user

registration, login, and

profile management

functionalities

Flask, HTML/CSS

Real-time Voting Results:

Display real-time voting

results, update vote

counts, and visualize the

progress of the voting

Flask, HTML/CSS

Online Bookstore Product Listings: Display

books available for sale,

including book titles,

authors, descriptions, and

prices

Django, SQLite

Shopping Cart: Allow

users to add books to the

cart, update quantities,

and proceed with the

checkout process

Django, HTML/CSS

Order Management:

Handle order placement,

order confirmation, and

generate invoices for

successful transactions

Django, SQLite

Recipe Finder

Application

Recipe Retrieval: Fetch

recipes based on user

input, including searching

by ingredients, cuisine, or

recipe name

Web scraping, APIs

Recipe Details: Display

recipe details such as

ingredients, preparation

steps, cooking time, and

user ratings

Flask, HTML/CSS

User Interface: Provide a

user-friendly interface for

searching, viewing, and

saving recipes

Flask, HTML/CSS

16

Stock Market

Analysis Tool

Data Retrieval: Retrieve

stock market data from

APIs and fetch

information such as stock

prices, historical data, and

financial indicators

Financial APIs, Python

requests

Data Analysis: Perform

analysis on stock data,

including calculating

moving averages,

identifying trends, and

generating statistical

insights

Python libraries for data

analysis

Visualization: Present

stock market trends and

analysis using charts,

graphs, and visual

representations

Matplotlib, Plotly

Movie

Recommendation

System

Recommendation Engine:

Suggest movies to users

based on their

preferences, viewing

history, and ratings

Machine Learning

algorithms, Python

Movie Database: Store

movie information,

including titles, genres,

ratings, and user reviews

Flask, HTML/CSS

User Interface: Provide

movie recommendations,

display movie details, and

allow users to rate and

review movies

Flask, HTML/CSS

Expense Tracker Expense Tracking: Allow

users to add, categorize,

and track personal or

business expenses

Flask, SQLite

Budget Management: Set

budgets, track spending

against budgets, and

Flask, HTML/CSS

17

provide alerts for budget

thresholds

Reporting: Generate

expense reports, visualize

spending patterns, and

provide insights on

expenditure trends

Flask, HTML/CSS

Blogging Platform Blog Management:

Create, publish, and

manage blog posts,

including features like

drafts, editing, and

comments

Django, SQLite

User Authentication:

Implement user

registration, login, and

profile management

functionalities

Django, HTML/CSS

User Interaction: Enable

users to like, share, and

comment on blog posts,

follow other bloggers,

and receive notifications

Django, HTML/CSS

Event

Management

System

Event Creation: Allow

organizers to create and

manage events, including

setting event details,

date, time, and venue

Django, SQLite

Registration and

Ticketing: Manage event

registrations, generate

tickets, and handle

payment processing

Django, HTML/CSS

Attendee Management:

Track attendee

information, send event

updates, and generate

attendee lists and reports

Django, SQLite

18

Online Auction

System

Auction Management:

Organize and manage

online auctions, including

creating auction listings,

setting bid durations, and

managing bids

Django, SQLite

User Authentication:

Implement user

registration, login, and

profile management

functionalities

Django, HTML/CSS

Bid Management: Enable

users to place bids, track

bid statuses, and notify

users about outbid or

winning bids

Django, HTML/CSS

Music Streaming

Application

Music Playback: Stream

and play music from a

database or online

sources, allowing users to

create playlists and

control playback

Flask, HTML/CSS,

JavaScript

User Interface: Provide a

music player interface

with features like play,

pause, skip, and volume

control

Flask, HTML/CSS

Online Job Portal Job Listings: Display

available job vacancies,

including job titles,

descriptions,

requirements, and

application deadlines

Django, SQLite

Resume Submission:

Allow job seekers to

upload resumes, cover

letters, and application

materials

Django, HTML/CSS

Employer Interaction:

Provide features for

Django, HTML/CSS

19

employers to post jobs,

review applications, and

communicate with

applicants

Note: The table includes an expanded list of projects, detailed module-wise use-

cases, and the corresponding technologies/tools/APIs required for each project.

20

Software Project Development Process

To successfully complete the above projects within the given time frame and learn about

software project development, students can follow a step-by-step process based on the

Software Development Life Cycle (SDLC), incorporating various design concepts. Here's an

extended version of the process:

1. Project Understanding and Planning:

 Thoroughly understand the project requirements and objectives.

 Identify the stakeholders and their needs.

 Define project scope, constraints, and deliverables.

 Create a project plan with specific milestones and deadlines.

2. Requirement Gathering and Analysis:

 Conduct detailed requirement gathering sessions with stakeholders.

 Document user stories, use cases, and functional requirements.

 Use techniques like interviews, surveys, and brainstorming to gather

requirements.

 Analyze the gathered requirements and create a requirement specification

document.

3. Design Phase:

 Use the gathered requirements to design the system architecture.

 Design the database schema using Entity-Relationship (ER) diagrams.

 Create Data Flow Diagrams (DFDs) to illustrate data movement and processing

within the system.

 Design user interfaces using wireframes and mock-ups.

 Apply user interface design principles to ensure usability and accessibility.

4. Development Iterations:

 Break down the project into smaller tasks or user stories.

 Prioritize and tackle the tasks based on their importance and dependencies.

 Follow an iterative development approach, implementing one feature or

module at a time.

 Write clean, modular, and well-commented code using best practices.

5. Testing and Debugging:

21

 Conduct various types of testing, such as unit testing, integration testing, and

system testing.

 Write test cases to verify the functionality and identify any defects.

 Perform regression testing to ensure that new changes do not impact existing

features.

 Debug and fix any issues or bugs that arise during testing.

6. Integration and Deployment:

 Integrate the different components or modules to ensure they work together

seamlessly.

 Deploy the application to a development or testing environment.

 Perform system-level testing and user acceptance testing.

 Prepare the application for production deployment.

7. Documentation:

 Document the project, including its architecture, design, and usage

instructions.

 Create user manuals, technical documentation, and system documentation.

 Document any APIs, libraries, or tools used in the project.

 Include installation and configuration instructions for the application.

8. Presentation and Demonstration:

 Prepare a presentation or demo to showcase the completed project.

 Explain the project's features, functionality, and implementation details.

 Use diagrams, such as ER diagrams and DFDs, to illustrate the system design

and data flow.

 Discuss the user interface design choices and how they enhance user

experience.

9. Reflection and Learning:

 Reflect on the project development process and identify areas for

improvement.

 Evaluate the challenges faced, lessons learned, and skills acquired.

 Consider feedback from stakeholders and users for future enhancements.

 Document your learnings and make note of any future improvements to the

project.

22

By following this comprehensive process, incorporating the SDLC stages and design concepts

like use case design, ER diagrams, data flow diagrams, and user interface design, students can

effectively complete the projects within the given time frame while gaining valuable

experience in software project development.

Contact

